EC35101 Semiconductor Devices and Technology

Prerequisite:

(i) Elements of Electronics Engineering (ii) Basics of circuits

Course Objective:

This course is intended to provide a good understanding of basic properties of semiconductor devices, physical principles and operational characteristics of different semiconductor devices and circuits. The primary focus will be on silicon based devices.

COURSE CONTENT:

Unit 1: Semiconductor Physics, Carrier Modelling and Carrier Action (6 L)

Energy Bands and Charge Carriers in Semiconductors: E-k diagram, Charge carrier concentration; Intrinsic carrier concentration; Law of mass action; Carrier transportation: Drift, diffusion and tunnelling, recombination, surface effects; Continuity equation in steady state condition; Fermi level; quasi-Fermi energy level; Hall effect; Optical and thermal properties.

Unit 2: Classical diodes

Shockley equation; Junction capacitance; Diffusion capacitance; Varactor diode; Tunnel diode; IMPATT diode; Gunn diode; Difference between rectifying contact and ohmic contact; Schottky Diode.

Unit 3: Physics of Operation of BJT

Transistor as switch: Delay time, Rise time, Storage time, Fall time, Transit frequency (wr); Ebers moll model; Gummel Poon model; Amplifier; RC coupled amplifier.

Unit 4: Physics of FET

JFET: Ohmic or triode region of operation, Saturation region of operation, Transfer characteristics, Output characteristics (Depletion Type Device or Normally-On device), Shockley Equation, Different parameters; MOS structure: Band diagram of an ideal MOS structure, Flat-band voltage, Region of operation, C-V characteristics; MOSFET: Region of operation, Transfer characteristics and Output characteristics for both n and p channel MOSFET (Enhancement and Depletion), Threshold voltage, body effect and channel length modulation, short channel effects, gradual channel approximation, Common source, Common gate and Common drain configurations.

Unit 5: Power Amplifiers, Power Devices & Display Devices

Power amplifiers with applications: Class A, Class B / push-pull, Class AB / complementary symmetry and Class C, SCR; Diac; Triac; Power BJT- Power MOSFET, Direct and Indirect semiconductor: LED, Solar cell, Photodiode, LCD, Opto Coupler, CCD and its applications.

Unit 6: Introduction to VLSI Technology:

VLSI Technology-An Overview-Wafer Processing, Oxidation, Epitaxial Deposition, Ionimplantation and Diffusion; The Silicon Gate Process- Basic NMOS Technology.

L-T-P: 3-0-2; Cr: 04

(11 L)

(9 L)

(4L)

(4 L)

(6 L)

List of Experiments for Semiconductor Devices Lab :

Experiment No. 01:	Study of Hall Effect.
Experiment No. 02:	Assembly of RC coupled amplifier.
	(a) To measure gain & bandwidth of degenerate amplifier.
	(b) To measure gain & bandwidth of emitter bypass capacitor amplifier.
Experiment No. 03:	Characteristics of n-channel MOSFET.
Experiment No. 04:	Study of common source MOSFET amplifier.
Experiment No. 05:	Resistivity measurement of a semiconductor using four probe method.
Experiment No. 06:	Study of complementary symmetry amplifier.
Experiment No. 07:	Study of class B push-pull amplifier.
Experiment No. 08:	Study of class C amplifier.
Experiment No. 09:	Study of SCR.
Experiment No. 10:	Study of component testing of various Surface Mounting Devices (SMD).
Experiment No. 11:	Study of ohmic and non-ohmic contacts (through software).
Experiment No. 12:	Experiment based minor project on the topics covered.

Textbooks:

- 1. D. A. Neamen, Semiconductor Physics and Devices, 3rd Edition, McGraw Hill, 2003.
- 2. Sedra and Smith, Microelectronics Circuits: Analysis and design, 6th Edition, Oxford University Press.
- 3. Tsividis, Y., "The MOS Transistor, Indian Third Edition", 3rd edition, Oxford University Press, 2011, ISBN 9780195170153, 2013

Reference Books:

- 1. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 7th Edition, Pearson.
- 2. S. M. Size, Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons, 1981.
- 3. Y. Tsividis, "Operation and Modeling of the MOS Transistor", 2nd Ed., Oxford University Press.
- 4. R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits, Wiley, 1986.
- 5. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley
- 6. J.D. Plummer, M.D. Deal and P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modelling, Pearson, 2000.

Course Outcomes:

Upon successful completion of this course, students should be able to: