Class Test-1, Electromagnetics (EC4501), ECE NITP

Q.1.Let $\vec{A} = 3\hat{y} + 4\hat{z}$ and $\vec{B} = 4\hat{x} - 10\hat{y} + 5\hat{z}$

- 1. Find the component of \vec{A} along \vec{B} .
- 2. Determine the unit vector perpendicular to both \vec{A} and \vec{B} .
- Q.2. Calculate the circulation of vector $\vec{A} = \rho \cos \phi \hat{\rho} + z \sin \phi \hat{z}$ along defined by the dimensions as $0 \le \rho \le 2$, $0 \le \phi \le 60^{\circ}$, z = 0. Also, validate the result using Stokes' theorem.
- Q.3. Find whether the vector field defined by $\vec{A} = 2\hat{x} + 3\hat{y} \hat{z}$ is solenoidal or rotational. Also, comment on its conservation property.
- Q.4. Resolve all the vectors of cylindrical coordinate system into the spherical coordinate system to find the transformation matrix from cylindrical to spherical and vice-versa.
- Q.5. How much is the divergence of magnetic flux around the magnetic bar. Why?
- Q.6. Draw the electric field distribution of static electric dipole and find the divergence and curl of this field.